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Question 1. (Total Marks: 10) 

(a) What do you mean by a Martingale. Discuss one example of martingale. (5 Marks) 

(b) A particle performs a random walk with absorbing barriers, say 0 and 4. Whenever it is at 

position r (O<r<4), it moves to r+1 with probability p or to r-1 with probability gq, p+q=1. But 

as soon as it reaches 0 or 4, it remains there. The movement of the particle forms a Markov 

chain. Write the transition probability matrix of this Markov chain. (5 marks) 

Question 2. (Total marks: 10) 

Classify the stochastic processes according to parameter space and state-space. Give at least 

two examples of each type. (10 marks) 

Question 3. (Total marks: 10) 

(a) What is the period of a Markov chain? Differentiate between periodic and aperiodic 

Markov chains. (5 marks) 

(b) What is the nature of state 1 of the Markov chain whose transition probability matrix is 

given below: (5 marks) 

0 1 2 

0 0 1 O 

I 1/2 0 1/2 

2 0 1 0 

Question 4. (Total marks: 20) 

(a) What is a Poisson process? (5 marks) 

(b) Let N(t) be a Poisson process with rate A > 0. Prove that the probability of n occurrences by 

time t is given by 

(atyteAt 
! 

P(t) = <# = 12,3; «as (15 marks) 

Question 5. (Total marks: 20) 

(a) Show that the transition probability matrix along with the initial distribution completely 

specifies the probability distribution of a discrete-time Markov chain. (10 marks) 

(b) Suppose that the probability of a dry day (state 0) following a rainy day (state 1) is 1/3 and 

that probability of a rainy day following a dry day is 1/2. Develop a two-state transition 

probability matrix of the Markov chain. Given that May 1, 2022 is a dry day, find the 

probability that May 3, 2022 is a dry day. 

(10 marks)
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Question 6. (Total marks: 10) 

(a) Find the steady-state probabilities of the Markov chain whose one-step transition 

probability matrix is given below: 

1/2 0 1/2 
1/2 1/2 0 

0 | 0 2/3 | 

(b) State Ergodic theorem. 

Q.7 (Total marks: 20) 

(a) Derive Kolmogorov backward differential equations. 

(b) Derive the steady-state probability distribution of birth-death process. 
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(7 marks) 

(3 marks) 

(10 marks) 

(10 marks)


